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Far-Field Pressure Estimation of a Plate from
the Interpolated Acceleration Distribution
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Prediction methods of noise radiated by vibrating structures are of great interest in many applications. Normal
acceleration measurements at the radiatorsurface can be used in combinationwith a method based on the Rayleigh
integral to deduce the far-� eld radiation corresponding to the excitation sources. This method is very attractive
because it is based mainly on the wave-number spectra computed by two-dimensional discrete Fourier transform.
The acceleration distribution data are collected with an array of transducers in most practical cases. The spatial
samplingperiod followsthe Nyquist theorem up to time frequency FMAX . The acoustic computationfrom measured
data is inaccurate up to FMAX for some observation directions because of the limited domain in which the wave-
number spectra are available. A solution is proposed in this paper to remove this limitation. The wave-number
spectra computationaldomain is extended by interpolating the acceleration distribution. This technique is applied
in estimation of the far-� eld pressure radiated by a steel-baf� ed plate tested in an anechoic chamber. Comparisons
between experimental measurements and estimated amplitudes carried out with interpolated data are in good
agreement in all spatial directions up to FMAX .

Nomenclature
CL = phase speed in a steel, 5000 m/s
c = reference speed of sound, 340 m/s
f = frequency
fm ,n = natural frequency of the mode m, n
h = plate thickness
k = 2 p f / c, acoustic wave number
kx = longitudinal structural wave number
kx max = p / D x
ky = transverse structural wave number
ky max = p / D y
L x , L y = plate dimensions
m, n = modes
Nx , N y = measurement array accelerometernumbers
p̃(r, h , } , f ) = far-� eld pressure sound at point (r, h , } )

and at frequency f
(r, h , } ) = spherical coordinates
t = time
(x , y, z) = Cartesian coordinates
b x , b y = trace of the acoustic wave number on the plate

(b x =k sin h cos } , b y =k sin h sin } )
C (kx , ky , f ) = two-dimensional spatial Fourier transform

of ˜c (x , y, f ) with respect to x and y
c (x , y, t ) = acceleration distribution
˜c (x , y, f ) = Fourier transform of c (x , y, t ) with respect to t
D x = L x / Nx sampling interval on the x axis
D y = L y / Ny sampling interval on the y axis

Presented as Paper 98-2217 at the AIAA/CEAS 4th Aeroacoustics Con-
ference, Toulouse, France, 2–4 June 1998; received 27 July 1998; revision
received 25 October 1999; accepted for publication 29 October 1999. Copy-
right c° 2000 by the authors. Published by the American Institute of Aero-
nautics and Astronautics, Inc., with permission.

¤ Research Engineer, DSNA/PARA, BP 72-29 avenue de la Division
Leclerc; blacodon@onera.fr. Member AIAA.

†Departmental Manager, Centre de Saclay, DPE;brenot@vandoise.cea.fr.
‡Unit Manager, DSNA/BREC, BP 72-29 avenue de la Division Leclerc;

julienne@onera.fr.

d = delta function
n = damping factor
q s = mean density of steel
q 0 = mean density of air

Introduction

F AR-FIELD prediction methods are of great interest in many
current applications. They are used, for example, to evaluate

the sound radiated by vibrating structures from near-� eld measure-
ments performedwith an arrayof microphones1,2 or with a synthetic
antenna.3 Other arrangementsbased on the accelerationdistribution
of the structure can be used to estimate the far-� eld sound. One of
these techniques,using the Rayleigh integral,4 is applied to the data
from an experiment performed in an anechoic chamber. The struc-
ture studied is a steel plate mounted in a baf� e. This simple case
is examined because many structures of practical interest, such as
walls and � oors of a building and factory machinery casings or ve-
hicle parts, can be modeled with suf� cient accuracy by rectangular
� at plates.

The plate studied was equipped with a matrix of accelerometers.
The size of the elementarymesh of this arraywas de� ned to generate
the acceleration distribution measurement over the plate surface
according to the Nyquist theorem up to a frequency FMAX. A two-
dimensional discrete Fourier transform is performed on the data
collected by the array to obtain the wave-number spectra required
for the acoustic computation.

The dif� culty is essentially caused by the problem of replicated
sources corresponding to the spectral aliasing phenomenon caused
by sampling in the spatial frequency domain. This is inevitably en-
countered when the spatial frequency spectrum is not bandlimited.
This problemweakly corrupts the far-� eld computationup to FMAX.
Then, anothermore penalizingdrawbackarises in this study.For our
observation directions the acoustic calculation has to be performed
with wave-number components larger than those provided by the
discrete Fourier transform. So, the far-� eld pressure cannot be ac-
curate up to FMAX because of those periodically replicated wave
number.
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Fig. 1 Geometry of the far-� eld pressure estimation of a plate inserted
in a baf� e from acceleration distribution measurements.

The objective of the paper is to propose a way to reduce the alias-
ing error by displacing the periodically replicated sources farther
away from the actual ones by interpolating the measurements.This
approach is illustrated by comparing experimental measurements
and far-� eld estimations with and without data interpolation.

Acoustic Field Pressure Radiated by Baf� ed Plate
Consider the geometry of the problem sketched in Fig. 1. A rect-

angular plate is simply supported on edge on a rigid baf� e located
in the plane z =0. This plate is mechanically excited at a single
point M (xe , ye) and radiates an acoustic wave � eld in the semis-
pace z > 0. The extrapolation problem consists in determining the
far-� eld pressure from the acceleration distribution c (x , y, t ) at an
observation point p(r, h , } ) and at any arbitrary frequency f .

This problem can be solved by the Rayleigh integral:

P̃(r, h , } , f ) =
q 0ei kr

2 p r

Z Lx / 2

¡ Lx / 2

Z L y /2

¡ L y / 2

exp[ ¡ ik(x sin h cos }

+ y sin h sin } )] ˜c (x , y, f ) dx dy (1)

This result is expressed in terms of the two-dimensional Fourier
transform of the acceleration distribution ˜c (x , y, f ):

C ( b x , b y , f ) =

Z Lx / 2

¡ L x /2

Z L y / 2

¡ L y / 2

exp[ ¡ i (x b x + yb y)] ˜c (x , y, f ) dx dy

(2)
where b x =k sin h cos } and b y =k sin h sin } . Substituting the pre-
ceding expression into Eq. (1), the pressure � eld can be written in
the following form:

P̃(r, h , } , f ) =
q 0eikr

2 p r
C ( b x , b y , f ) (3)

We are not interested in the phase relationship in the far � eld, but
rather in the sound intensity pressure level

j P̃(r, h , } , f ) j 2 = ( q 0 /2 p r )2 j C ( b x , b y , f ) j 2 (4)

This is the formula used in acoustic computations.

Spatial Sampling and Far-Field Sound
Prediction Maximum Frequency

The limitations in using Eq. (4) are introduced by spatial sam-
pling. These acoustic calculations are examined in this section.

Fig. 2 Geometry of accelerometer array on the plate surface.

Limitation Caused by the Spatial Sampling of the Plate

The assumption is made that the measurement array comprises
N = Nx ¢ Ny (Nx =4 and N y =7) accelerometers at positions xnx ,
yn y located on a rectangular grid, as illustrated in Fig. 2:

xn x = ¡ L x /2 + D x

¡
nx + 1

2

¢
, nx = 0, 1, . . . , Nx ¡ 1

(L x = 0.28 m)

yn y = ¡ L y /2 + D y

¡
n y + 1

2

¢
, n y = 0, 1, . . . , Ny ¡ 1

(L y = 0.49 m) (5)

where D x =L x / Nx =0.07 m and D y = L y / Ny =0.07 m.
Let ˜c d (x , y, f ) designate the time Fourier transformof the accel-

eration sampled by the planar array

˜c d (x , y, f ) =
Nx ¡ 1X

n x = 0

N y ¡ 1X

n y =0

d
¡
x ¡ xn x , y ¡ yn y

¢
˜c (x, y, f ) (6)

The modulus squaredof the two-dimensionalFourier of ˜c d (x , y, f )
with respect to x and y is

j C d (kx , ky , f ) j 2 =
1X

n1

1X

n2

j C d (kx + n12kx max , ky + n22ky max, f ) j 2

(7)

where kx max = p /D x =44.87 rd/m and ky max = p /D y =44.87 rd/m.
C d (kx , ky , f ) is doubly periodic in (kx , ky ), with period (2kx max,

2ky max). Moreover there will be no replicated wave number in
j C d (kx , ky , f ) j 2 if

j C d (kx , ky , f ) j 2 = 0 for

»
j kx j < kx max = 44.88 rd/m

j ky j < ky max = 44.88 rd/m
(8)

We shall soon establish that conditions (8) remain true up to fre-
quency FMAX.

Let us now consider a rectangular panel simply supported on
an in� nite rigid baf� e. Its acceleration distribution induced by a
monochromatic force at frequency f and at position M(xe , ye) is 5

˜c (x , y, f ) =
f 2

p q sh

£
P 1

m = 1

P 1
n = 1 sin

£
m p

¡
x / L x + 1

2

¢¤
sin

£
n p

¡
y / L y + 1

2

¢¤

f 2
mn ¡ 2i n f fmn ¡ f 2

Emn

(9)

where

Emn = E0 sin
£
m p

¡
xe / L x + 1

2

¢¤
sin

£
n p

¡
ye / L y + 1

2

¢¤

and E0 is the force amplitude.
Each term of this double sum indicates that ˜c (x , y, f ) has a

signi� cant value arround the resonance frequencies fmn , which is
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Table 1 Theoretical and experimental natural frequencies
fmn associated with the modes m; n

Experimental natural frequencies

Shaker at
Theoretical natural Shaker at x = ¡ 6 cm,

m n frequencies, Hz x = y = 0 y = ¡ 14 cm

1 1 460 450 450
1 2 800 —— 800
1 3 1367 1300 1300
2 1 1501 —— 1600
2 2 1841 —— 1800
1 4 2160 —— 2100
2 3 2408 —— 2300
1 5 3180 2850 3000
2 4 3201 —— ——
3 1 3237 3350 ——
3 2 3577 —— ——
3 3 4143 —— 3850
2 5 4221 —— 4200
1 6 4426 —— ——
3 4 4936 —— ——
2 6 5467 —— 5300
4 1 5666 —— 5600
1 7 5899 5850 ——

assumed to be negligible outside a narrow frequencyband centered
on fmn . Below a given frequency FMAX, only modes m, n satisfying

fmn =
¡
hCL / 2 p

p
12

¢¡
k2

x + k2
y

¢
< FMAX (10)

where

kx = m p / L x , ky = n p / L y (11)

contribute to the acceleration distribution.The list of the fmn up to
5899 Hz associated with modes m, n are grouped in Table 1.

The following relations between Nx and Ny and the panel modes
m and n can be then deduced comparing Eqs. (8) and (11):

j m j < Nx , j n j < Ny (12)

We conclude then that c (x , y, t) is not undersampledup to FMAX =
fm =2,n =6 =5467 Hz obtained from Table 1 and Eq. (12). Hereafter,
the assumption will be made that the mode m =4, n =1 is weakly
replicated in the frequency band [0, FMAX], and thus c (x , y, t ) will
be consideredas a bandlimitedfunctionin wave numberuntil FMAX.

Limitation Caused by the Far-Field Computation

Let us return to the problem of sound radiation by the baf� ed
plate.From Eq. (7) there is no aliasingphenomenonnor periodically
replicated wave number in j C d ( b x , b y , f ) j 2 if j b x j and j b y j verify

j b x j < kx max =44.88 rd/m, j b y j < ky max =44.88 rd/m (13)

We will show that the acoustic computation requireswave numbers
j b x j and j b y j to be larger than kx max, ky max, respectively, in the ex-
periment described in the last section. To prove this, let us replace
b x and b y in Eq. (13) by their expressions [Eq. (2)] to obtain

j (2 p fx / c) sin h cos } j < p / D x , j (2 p fy /c) sin h sin } j < p / D y

(14)

We deduce from the preceding that the computation of j C d ( b x ,
b y , f ) j 2 is correct up to

fmax = min( fx , f y) (15)

where

fx = c/ 2D x j sinh cos } j , f y = c /2 D y j sin h sin } j (16)

Relations (16) also show that the frequency fmax depends on both
the spherical angles h , } and the sampling periods D x and D y.
The lowest limit fmax =2428 Hz is obtained for j sin h cos } j =
j sin h sin } j =1, when the observation point is on the normal to
the plate, and the largest one is fmax = FMAX(FMAX =5467 Hz) be-
cause of the spatial sampling. Thus, fmax can be equal to the upper
limit FMAX for speci� c angles h or } , but it is generally smaller.
Now consider the ideal case where min( fx ) = min( f y) = FMAX

to determine the highest wave number b x , b y required by the
acoustic computation. Inserting these two frequencies in Eqs. (14),
we get

j b x j max = j b y j max = 101 rd/m (17)

Clearly, this result is irrelevant with Eqs. (13) because j b x j max and
j b y j max are much larger than 44.88 rd/m. The components j kx j , ky j >
44.88 rd/m of j C d (kx , ky , f ) j 2 are thus periodically replicated in the
wave-number domain [Eq. (7)]. This is why the acoustic computa-
tion Eq. (4) cannotbe accurateup to FMAX for particularobservation
directions.

Extension of Wave-Number Spectra Calculation
The problem just explained can be solved simply by analyzing

Eqs. (16), which suggest that the size D x and D y of the elementary
mesh of the array must be divided by three to displace the periodi-
cally replicated wave number beyond this domain:

0 < j b x j < kX MAX, kX MAX = p / ( D x / 3) = 3kx max

0 < j b y j < kY MAX, kY MAX = p / ( D y / 3) = 3ky max (18)

representing the computational region of j C d (kx , ky , f ) j 2 for the
acoustic calculation. This can be achieved using a two-dimen-
sional interpolation method because the acceleration distribution
˜c d (x , y, f ) has been assumed to be bandlimited in wave number
until FMAX [see after Eq. (12)]. The interpolated data ˜c i (x p , yq , f )
in x p = p D x / 3 and yq =q D y / 3 are obtained from the original se-
quence ˜c d (x , y, f ) using the following expression6:

˜c i (x p , yq , f ) =
NxX

nx

NyX

n y

˜c d

¡
xnx , yn y , f

¢

£
sin(xpkX MAX ¡ nx p )

x pkX MAX ¡ nx p

sin(yq kY MAX ¡ n y p )
yqkY MAX ¡ n y p

(19)

A � nite numberof terms are used in the precedingexpansioninduc-
ing a truncation error7

eNx , N y ·

vuut p

kX MAX

p

kY MAX

X

p > Nx

X

q > Ny

ê
ê
ê
ê
˜c

³
p

p

kX MAX
, q

p

kY MAX
, f

ế
ê
ê
ê

2

(20)

This error remains acceptable,as shown in the next section by com-
paring the far-� eld prediction computed from accelerometers data
with and without interpolation.

Tests in an Anechoic Chamber
A simple experiment was conducted in an anechoic chamber to

validate the method proposed in this paper. The experimental setup
is shown in Fig. 3.

We used a steel plate of thickness h =12 cm, width L x =8 cm,
and length L y =49 cm. It was inserted in a baf� e made of plates
of expanded polystyrene covered by wooden panels with re� ecting
skin.

In the experiment the plate was mechanically excited at a single
point by a shaker vibrating in the frequency range [0, 10 kHz] to
obtain the broadband plate response. First, the shaker was centered
at x = y =0 in order to excite only the odd natural modes. Then it
was moved to x = ¡ 6 cm, y = ¡ 14 cm to excite both odd and even
natural modes.
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Fig. 3 Experimental setup.

Fig. 4 Microphones location on the semicircular support.

Fig. 5 Location of the semicircular support during the experiment.

The accelerationdistributionwas measured by four rows of seven
Bruel and Kjaer 4374 accelerometers. The acoustic far-� eld ra-
diated by the plate was measured by eight Aksud 4133 micro-
phones placed on a semicircular support of radius r =2 m, at
angles h 1 =75 deg, h 2 =60 deg, h 3 =45 deg, h 4 =30 deg, h 5 =
15 deg, h 6 =0 deg, h 7 = ¡ 30 deg, h 8 = ¡ 60 deg (Fig. 4). This sup-
port was moved around its main axis at 10 angles } 1 =30 deg,
} 2 =60 deg, } 3 =90 deg, } 4 =105 deg, } 5 =120 deg, } 6 =135 deg,
} 7 =150 deg, } 8 =165 deg, } 9 =180 deg, } 10 =210 deg (Fig. 5),
allowing the data to be collected on a semisphere sampled at 71
points.

Experimental Results
We � rst present the power spectral density measured by one ac-

celerometer when the plate excitation is centered and then moved
off center in order to examine the plate frequencyresponse for these
two con� gurations.Then the wave-numberspectracorrespondingto
the case where the shaker is centeredare displayedin order to 1) � rst
verify the hypothesis that j C d (kx , ky , f ) j 2 is a bandlimited function
with respect to kx , ky and 2) then illustrate the precedingdiscussion
on the aliasingproblemand its solutionas achievedby interpolating
the accelerationdistribution.Lastly, comparisonsare made between
measured and predicted far-� eld sound pressure levels.

Plate Frequency Response

Figure 6 shows the power spectrum of accelerometer 6 (Fig. 2)
when the shaker is centered. Many peaks appear corresponding to
the natural frequencies of the plate. The � rst peaks at frequen-
cies f =450, 1250, 2850, and 3350 Hz are caused by the odd
natural modes (m =1, n =1), (m =1, n =3), (m =1, n =5), and
(m =3, n =1) respectively, (see Table 1). As expected, the even
modes are weakly excited.

Figure 7 presents the power spectrum of the same accelerometer
when the shaker is not centered. The power spectrum decreases
beyond 5 kHz because of the antialiasing � lter. The number of
peaks is much higher than before because the odd and even nat-
ural modes are both excited. Table 1 indicates that the � rst fre-
quencies ( f =800, 1800, and 2100 Hz) correspond to the modes
(m =1, n =2), (m =2, n =2), and (m =1, n =4).

Wave-Number Spectra

The plot of the accelerationwave-number spectrum j C d (kx , f ) j 2

in the frequencyrange[0, 10kHz] (Fig. 8) is obtainedfromdata from
the fourth column of accelerometers (i.e., accelerometers 13, 14,
15, and 16), showing that the plate is excitedmainly at odd resonant
frequencies because of the centered excitation (see Table 1). The

Fig. 6 Frequency spectrum of acceleration measured by accelerome-
ter 6 in Fig. 2 when the shaker is centered on the plate.

Fig. 7 Frequency spectrum measured of acceleration by accelerome-
ter 6 in Fig. 2 when the shaker is moved off the center of the plate.
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zero wave-number peak is dominant at f =1250 Hz. The wave-
number components are larger in the high frequency range. But,
as expected, the aliasing phenomenon with respect to kx , ky is
negligible. It corresponds to the grating lobes at the largest wave-
number spectra components beyond 4.3 kHz.

The plot (Fig. 9) obtained from data collected by the third row of
accelerometers(i.e., accelerometers3, 7, 11, 15, 19, 23, and 27) also
shows that the plate is excited mainly at the odd resonant frequen-
cies. A dominant peak appears at ky =11.21 rd/m and f =4.2 kHz.

Fig. 8 kx wave-number frequency response of the plate subjected to a
centered excitation.

Fig. 9 kx wave-number frequency response of the plate subjected to a
centered excitation.

Fig. 10 Wave-number spectra computed at f = 4134 Hz from rough
data in the wave-number region ( j kx j ; j ky j ) · 44.87 rd/m.

Fig. 11 Same legend as in Fig. 10, but the computation is performed
in the wave-number region ( j kx j ; j ky j ) · 89.74 rd/m.

Fig. 12 Same as Fig. 11, but the computation is performed in the do-
main ( j kx j j ky j )· 134.61 rd/m. with interpolated data.

Fig. 13 Comparisonbetween measuredamplitudes(– – –)andfar-� eld
pressure predicted with initial data (——).
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As before, the aliasing phenomenon with respect to kx , ky remains
very weak.

The two-dimensionalwave-number spectra computed with mea-
sured data at f =4.134 KHz are presented in Fig. 10. For this
frequency the actual wave-number components satisfy the condi-
tions ( j kx j , j ky j ) ·44.87 rd/m, and this is veri� ed because there are
only four peaks centered around (kx =30 rd/m, ky =22.4 rd/m),
(kx =30 rd/m, kx = ¡ 22.4 rd/m), (ky = ¡ 30 rd/m, ky =22.4 rd/m),
and (kx = ¡ 30 rd/m, ky = ¡ 22.4 rd/m).

The aliasing phenomenon becomes visible in Fig. 11, which is
also computed with measured data but in a larger kx , ky domain
(i.e., ( j kx j , j ky j ) ·89.74 rd/m). The 12 peaks beyond j kx j , j ky j ) >
44.87 rd/m are caused by the double periodicity introduced by the
discrete Fourier transform because the plate response should be
zero. The far-� eld sound pressure predictions estimated with these
components cannot therefore be correct.

Lastly, wave-numberspectra are displayed(Fig. 12) in the acous-
tic componentregion requiredfor far-� eldpressureestimations(i.e.,
for (j kx j , j ky j ) ·101 rd/m). The computationis carriedout fromdata
interpolatedusingEq. (19). Clearly, the undesirablepeaks in Fig. 11

Fig. 14 Comparisonbetween measuredamplitudes(– – – )andfar-� eld
pressure predicted with interpolated data (——).

havebeendisplacedbeyondthe revelantdomain in kx , ky . Now only
the four actual peaks are left as shown in Fig. 10.

Comparison Between the Measured and Estimated
Far-Field Pressure Level

The measured sound pressure � eld amplitudes at locations ( h =
75 deg, } =60 deg), ( h =60 deg, } =60 deg), (h =45 deg, } =
60 deg), ( h =30 deg, } =60 deg) are comparedwith sound pressure
estimates using Eq. (4) and measured accelerations. Accelerations
with and without interpolationare considered.

Shaker Centered

In the � rst test the far-� eld radiated pressure is produced only by
the odd natural modes of the plate.

Radiation Sound Computation Using Measured Accelerometer Data

Clearly, the agreement is very good in Fig. 13 up to a frequency
close to fmax [computed with Eq. (15)] and depending on of the

a)

b)

c)

d)

Fig. 15 Comparisonbetween measuredamplitudes(– – –)andfar-� eld
pressure predicted with initial data (——).
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Fig. 16 Comparisonbetween measuredamplitudes(– – – )andfar-� eld
pressure predicted with interpolated data (——).

direction observations. Nevertheless, it appears that fmax is below
FMAX depending on the observation angles.

Radiation Sound Computation Using Interpolated Acceleration Data

Experimentalmeasurementsand far-� eld soundestimationsnear-
ly coincide beyond FMAX with only slight differences on a number
of peaks (Fig. 14) when the computationsare carried out with inter-
polated data.

Shaker Noncentered

In the second test the sound radiated in the far � eld is produced
by the odd and even natural modes of the plate. As in the preceding
case, a remarkableagreement is found between the amplitudeof the
� eld measured and estimated from measured acceleration data but
not up to FMAX in Figs. 15a–15c and above FMAX in Fig. 15d. The
decrease observed in the measured amplitudes beyond 5.7 kHz is
caused by an antialiasing � lter. When the computations are carried
out with interpolated data, measured and calculated amplitudes are
again in agreement up to FMAX (Fig. 16).

Conclusion
The far-� eld pressure radiated by a baf� ed steel plate subject

to a point excitationwas predictedusing the wave-numberspectraof
theaccelerationdistributionmeasuredbyanarrayof accelerometers.
The accelerometerarray samples the accelerationdistributionin ac-
cordance with the Nyquist theorem up to the frequency FMAX. Nev-
ertheless, the acoustic calculation from measured acceleration data
is not accurate up to FMAX anywhere in the space above the plate,
because it is carried out with periodically replicated components in
wave-number spectra. An interpolation method is proposed to ex-
tend the computationaldomain wave number, allowing the acoustic
calculation up to FMAX at any far-� eld point. This conclusion is
con� rmed by numerous comparisons between experimental mea-
surements and estimated sound pressure levels.
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